Lecture 22

Theorem [Second Isomorphism Theorem]
If
$$K \leq G$$
 and $N \triangleleft G$, then $\frac{K}{K \cap N} \simeq \frac{K N}{N}$.

Proof First note that
$$j \in K \leq G$$
 and $N \leq G$
=D $KN \leq G$. $KN \neq \phi$ as $e \in KN$.
Let $Q = R_1 n_1 \in KN$ for $R_1 \in K$, $n_1 \in N$.
 $b = R_2 n_2 \in KN$ for $R_2 \in K$, $n_2 \in N$

Then
$$ab^{-1} = k_1n_1 (k_2n_2)^{-1} = k_1n_1n_2^{-1}k_2^{-1}$$

 $= k_1n_3k_2^{-1}$
 $= k_1k_2^{-1}k_2n_3k_2^{-1}$
 $= k_3k_2n_3k_2^{-1}$
But since $N < I G = P \quad k_2n_3h_2^{-1} \in N$ by the
normal subgroup test. So
 $ab^{-1} = k_3n_4 \in KN = P \quad KN \leq G_1$.
Also, $N < KN$. Let $k_1n_1 \in KN$. Then
 $k_1n_1 N = k_1N = O$
also, since $N < I G$ and $k_1 \in G$ top $\Rightarrow k_1N = Nk_1$
 $\Rightarrow k_1n_1 = n_2k_1$ for some $n_2, n_3 \in N$
 $\Rightarrow Nk_1n_1 = Nn_2k_1 = Nk_1 = O$
dince $N < G = D \quad Nk_1 = k_1N = O$ from O and
 \textcircled{O} we get that $k_1n_1N = Nk_1n_1$

=
$$P N K K N$$
.
Thus $\frac{K N}{N}$ is a group.
 N

To prove
$$\frac{K}{KON} \cong \frac{KN}{N}$$
, we'll use

$$\frac{P_{\text{ninciple 3}}}{H} := \text{When vers you want to show }$$

that $\frac{G}{H} \cong \overline{G}$, try to find a swjective H

homomorphism y: G → G and show that kery = H and then apply the first Isomor--phism Theorem.

So, define
$$g: k \longrightarrow \frac{KN}{N}$$
 by
 $g(R) = RN$
 $g(R)$

for any
$$k_1 n_1 N \in \frac{KN}{N}$$
, $k_1 n_1 N = k_1 N$ and
so for $k_1 \in K$, $\mathcal{G}(R_1) = k_1 N$.
 \mathcal{G} is a homomorphism
Let $k_1 k_2 \in K$. Then
 $\mathcal{G}(k_1 \cdot k_2) = k_1 R_2 N = k_1 N k_2 N = \mathcal{G}(k_1) \mathcal{G}(k_2)$
So, \mathcal{G} is a homomorphism.

What is
$$\operatorname{Ren} \mathcal{G}$$
?
 $\operatorname{Ren} \mathcal{G} = \{ R \in \mathbb{N} \mid \mathcal{G}(R) = \mathbb{N} \}$ as N is the
identity in $\frac{KN}{N}$.

SO, $\mathcal{G}(R) = RN = N = D \quad R \in N$. But $R \in K$ SO, $R \in K \cap N = D \quad Ren(\mathcal{G}) = K \cap N$ Omch by the First Isomorphism Theorem (FIT)

$$\frac{k}{KON} \cong \frac{KN}{N}$$

Theorem [Third Isomorphism Theorem]

If M J G, N J G and M $\leq N$, then

$$\frac{G}{M} \cong \frac{G}{N}$$

i.e., G/M is a group as M $\leq G$, G is a

group as N $\leq G$. Since $M \leq N \Rightarrow M \leq N \Rightarrow$

N/M is also a group. Finally, $\frac{N}{M} \leq \frac{G}{M} \Rightarrow$

 $\frac{G/M}{N/M}$ is also a group. The theorem says

the groups $\frac{G/M}{N/M} \cong \frac{G}{N}$.

Finally, let's see one more application of FIT.

<u>Theorem [Correspondence Theorem]</u> Let $\mathcal{G}: G \to \overline{G}$ be a surjective homomorphism. Consider the set $S = \{H \in G_n\}$ ker $\mathcal{G} \leq H \{$ which is the set of all those subgroups in Gwhich contain ker \mathcal{G} . Consider the set $T = \{\overline{H} \leq \overline{G} \}$ which is the set of subgroups of \overline{G} . Then

 There is a bijection y b/w S and T.
 2) If H∈S, i.e., H≤G and Reng≤H, then [G:H] = [G:Y(H)]

So, the theorem is saying that every subgroup of G which contains kerg corresponds to a unique subgroup of G and vice-versa, every subgroup of G corresponds to a subgroup of G which contains key g. So, the subgroup structure of G is same as the structure of subgroups of G containing key g.

Proof We'll construct a bijection b/ws S and T. Recall that if $\mathcal{G}: G \to \overline{G}$ is a homomorphism, then $\mathcal{G}(H) \leq \overline{G}$ for any $H \leq \overline{G}$. Define $\mathcal{V}: S \longrightarrow T$ by $\mathcal{V}(H) = \mathcal{G}(H)$ i.e., take any subgroup in \overline{G} and map it to its homomorphice image in \overline{G} . Define $\overline{\mathcal{V}}: T \longrightarrow S$ by $\overline{\mathcal{V}}(\overline{H}) = \mathcal{G}^{-1}(\overline{H})$

i.e., take any subgroup of G and map it to the inverse image of H under y. (Recall that $g^{-1}(\overline{H}) \leq G_1$. We want to show that y and y are inver--ses of each other and y.y. = Id_ and Troy = Idg. But even before that, why should \$\vec{V}(\vec{H})\$ lie en S, i.e, why should g⁻¹(H) contain Ren y? Well, $q^{-1}(\overline{H}) = \{g \in G \mid g(g) \in \overline{H} \}$ since, $\vec{e} \in \vec{H} = \vec{P}$ Ren $\vec{\varphi} = \{\vec{g} \in G \mid \vec{\varphi}(\vec{q}) = \vec{e} \in \vec{H}\}$ is contained in y-'(H) and hence $\overline{\psi}(H) \in S$. Proof of D $\underline{\text{Claim L}} \quad \Psi \cdot \overline{\Psi} = \text{Id}_{T}$ Let $\overline{H} \in \overline{G} = \overline{V} \quad \overline{\Psi}(\overline{H}) = 9^{-1}(\overline{H})$ $\Psi \circ \overline{\Psi}(H) = \Psi(\varphi^{-1}(\overline{H})).$

Note that, we cannot write $\mathcal{P}(\mathcal{G}^{-1}(\overline{H}))=\overline{H}$ as for example if $\mathcal{G} \to \overline{\mathcal{G}}$ is the trivial homomorphism then $g'(\overline{H}) = G$ and $g(g'(\overline{H}))$ = $\mathcal{G}(G) = \overline{\mathcal{E}} \neq \overline{H}$. In fact, this is the reason. we are taking S= > H=G, kerp < H> as you'll see that a complication like just described mon't occur je me choose subgroups from S. Want: $-\nabla \varphi(\varphi^{-1}(\overline{H})) = \overline{H}$. Let heH. Lince g is surjective => => => geG s.t. $\varphi(q) = \overline{h} = \varphi \quad g \in \varphi'(\overline{H}) \text{ and}$ $g(q) = h \in g(\varphi^{-1}(\overline{H})) \Rightarrow \overline{H} \subseteq g(\varphi^{-1}(\overline{H})).$ Conversely, if h ∈ 𝔅(𝔅⁻¹(Ħ) = $P = g \in g^{-1}(\overline{H})$ so to $h = \psi(g)$ If $g \in g^{-1}(\overline{H}) = \mathcal{D} \quad g(g) \in \overline{H} = \mathcal{D} \quad h \in H$

Thus Claim 1 is true.

Similarly, one can prove that $\overline{\Psi} \circ \Psi = \operatorname{Ids}$ and hence \overline{F} a bijection b/w S and T. This proves 1) of the Theorem. Now we'll prove part 2) i.e., if $H \in S$, then $[G:H] = [\overline{G}: \Psi(H)]$.

It's enough to construct a bijection b/w the set of left cosets of H ei G and the set of left cosets of Y(H) in G. Define ₹: {gH : g ∈ G, H ∈ S{ → {gH | H ∈ T}} by ₹(gH) = g(g)g(H)

Recall Principle 2 :- we must check that the map I is well-defined as the domain is the set of cosets.

=12	$\mathcal{P}(\mathfrak{d}^{\mathcal{I}},\mathfrak{d}^{\mathcal{I}})\mathcal{Q}(\mathcal{H}) = \mathcal{Q}(\mathcal{H})$
=D Hence	$\mathcal{G}(q_1)\mathcal{G}(H) = \mathcal{G}(q_2)\mathcal{G}(H)$ $\overline{\mathfrak{a}}(q_1H) = \overline{\mathfrak{a}}(q_2H) = \mathcal{D}$ $\overline{\mathfrak{a}}$ is well-defined.
n is	one-one
het	$\Xi(g,H) = \Xi(g_{2}H)$
Ð	$\mathcal{G}(\mathbf{d}')\mathcal{G}(H) = \mathcal{G}(\mathbf{d}')\mathcal{G}(H)$
=D	$\mathcal{B}(3^{2},3^{2})\mathcal{B}(H) = \mathcal{B}(H)$

So, let
$$g_1 H = g_2 H = \mathcal{P} \quad g_2^{-l} g_1 \in H$$
.
Now $\overline{\mathfrak{z}}(g_1 H) = \mathfrak{P}(g_1) \mathfrak{P}(H)$
 $\overline{\mathfrak{z}}(g_2 H) = \mathfrak{P}(g_2) \mathfrak{P}(H)$
now $\mathfrak{P}(g_2^{-1} g_1) = \mathfrak{P}(g_2)^{-1} \mathfrak{P}(g_1) \quad [ao \ \mathfrak{P} \ is a homomorphism]$
But $\mathfrak{Y} \quad g_2^{-1} g_1 \in H = \mathcal{P}$
 $\mathfrak{P}(g_2^{-1} g_1) \in \mathfrak{P}(H)$

=
$$p(q_1^{-1}q_1) \in Q(H)$$

= $q_2^{-1}q_1 \in H = p \quad q_2H = q_1H \text{ and } f \text{ is one-one.}$
 $\overline{a} \text{ is onto}.$
Let $\overline{g}q(H)$ be a coset of $P(H)$. Since
 q is subjective = $p = g \in G \text{ st. } g(q) = \overline{g}.$
= $\overline{a}(gH) = P(q)P(H) = \overline{g}P(H).$
= $\overline{a} \text{ is onto.}$
Thus \overline{a} is a bijection and hence we prove

part 2).

[]

I know that this is neither the easiest nor the best proofs to see, so I do not expect you to learn this. However, it's important to understand the content of the theorem. Recalls that if $\mathcal{G}: G \to \overline{G}$ is an isomorphism then $\operatorname{Rer} \mathcal{G} = \overline{\{e\}}$ and hence any $H \leq G$ conta--ins $\operatorname{Rer} \mathcal{G}$. So as a constitution of the correspon--chence theorem, we see that

Also, recall that if NAG, then $N = \ker g$ where $g: G \longrightarrow \frac{G}{N}$ is the natural homomorph--ism from $G \longrightarrow \frac{G}{N}$. Thus, the correspondence theorem gives

$$\frac{\text{Corrollary 2}}{\text{N}} \quad \text{Let } N \triangleleft G \text{ and } \mathcal{G} : G \longrightarrow G \text{ be the } N$$
natural homomorphism. Then