Lecture 22

There are two more isomorphism theorems. I am stating them here (and proving one of them). However, we wont study them in much cletail. (They mon't be in your syllabus for the exam. Jay!)

Theorem [Secund Isomorphism Theorem]
If $K \leqslant G$ and $N \triangleleft G$, then $\frac{K}{K \cap N} \cong \frac{K N}{N}$.
Proof First note that is $K \leq G$ and $N \triangleleft G$ $\Rightarrow \quad K N \leq G . \quad K N \neq \phi$ as $\quad e \in K N$.

Let $a=k, n, \in K N$ for $k, \in K, n, \in N$.

$$
b=k_{2} n_{2} \in K N \text { for } k_{2} \in K, n_{2} \in N
$$

$$
\text { Then } \begin{aligned}
a b^{-1}=k_{1} n_{1}\left(k_{2} n_{2}\right)^{-1} & =\underbrace{n_{2}^{-1}}_{n_{1} n_{1} n_{2}^{-1}} \\
& =k_{1} n_{3} k_{2}^{-1} \\
& =\underbrace{}_{k_{1} k_{2}^{-1} k_{2} n_{3} k_{2}^{-1}} \\
& =k_{3} k_{2} n_{3} k_{2}^{-1}
\end{aligned}
$$

But since $N \wedge G \Rightarrow R_{2} n_{3} R_{2}^{-1} \in N$ by the normal subgroup test. So

$$
a b^{-1}=k_{3} n_{4} \in K N \Rightarrow K N \leq G .
$$

Also, $N \triangleleft K N$. Let $k, n, \in K N$. Then

$$
\begin{equation*}
k_{1} n_{1} N=R_{1} N \tag{1}
\end{equation*}
$$

also, since $N<G$ and $k_{1} \in G$ too $\Rightarrow k_{1} N=N k_{1}$ $\Rightarrow \quad k_{1} n_{1}=n_{2} k_{1}$ for some $n_{2}, n_{3} \in N$

$$
\begin{equation*}
\Rightarrow \quad N k_{1} n_{1}=N n_{2} k_{1}=N k_{1} \tag{2}
\end{equation*}
$$

Since $N \triangleleft G \Rightarrow N R_{1}=R_{1} N \Rightarrow$ from (1) and
(2) we get that $k, n, N=N R, n_{1}$
$\Rightarrow \quad N \triangleleft K N$.
Thess $\frac{K N}{N}$ is a group.
To prove $\frac{K}{K \cap N} \cong \frac{K N}{N}$, well use
Principle 3:- Whenver you want to show that $\frac{G}{H} \cong \bar{G}$, try to find a surjective
homomorphism $\varphi: G \rightarrow \bar{G}$ and show that $\operatorname{ker} \varphi=H$ and then apply the first Isomor--phism Theorem.

So, define $\quad \varphi: K \longrightarrow \frac{K N}{N}$ by

$$
\varphi(R)=R N
$$

φ is onto
for any $k, n, N \in \frac{K N}{N}, k, n, N=k, N$ and
so for $R_{1} \in K, \varphi\left(R_{1}\right)=R_{1} N$.
φ is a homomorphism
Let $R_{1}, R_{2} \in K$. Then

$$
\varphi\left(R_{1} \cdot R_{2}\right)=R_{1} R_{2} N=k_{1} N k_{2} N=\varphi\left(R_{1}\right) \varphi\left(k_{2}\right)
$$

So, φ is a homomorphism.

What is $\operatorname{Ren} \varphi$?
$\operatorname{ken} \varphi=\{R \in N \mid \varphi(R)=N\{$ as N is the identity in $\frac{K N}{N}$.
so, $\varphi(R)=R N=N \Rightarrow k \in N$. But $R \in K$
so, $R \in K \cap N \Rightarrow \quad \operatorname{ken}(\varphi)=K \cap N$
and by the First Isomorphism Theorem (FIT)

$$
\frac{K}{K \cap N} \cong \frac{K N}{N}
$$

Theorem [Third Isomorphism Theorem] If $M \triangleleft G, N \Delta G$ and $M \leq N$, then

$$
\frac{\frac{G}{M}}{\frac{N}{M}} \quad \cong \quad \frac{G}{N}
$$

i.e., $\quad G / M$ is a group as $M \triangleleft G, \frac{G}{N}$ is a group as $N \Delta G$. Since $M \leq N \Rightarrow M \Delta N \Rightarrow$ N / M is also a group. Finally, $\frac{N}{M} \triangleleft \frac{G}{M} \Rightarrow$ $\frac{G / M}{N / M}$ ib ado a group. The theorem says the groups $\frac{G / M}{N / M} \cong \frac{G}{N}$

Finally, let's see one more application of FIT.

Theorem [Correspondence Theorem]
Let $\varphi: G \rightarrow \bar{G}$ be a surjective homomorphism. Consider the set $S=\{H \leq G \mid \operatorname{ker} \varphi \leq H\{$ which is the set of all those subgroups in G which contain Rel φ. Consider the set $T=\{\bar{H} \leq \bar{G}\{$ which is the set of sulagroups of \bar{G}. Then

1) There is a bijection ψ b/w S and T.
2) If $H \in S$, i.e., $H \leq G$ and $\operatorname{Rer} \varphi \leq H$, then $[G: H]=[\bar{G}: \Psi(H)]$

So, the theorem is saying that even g subgroup of G which contains $\operatorname{ker} \varphi$ corresponds to a
unique subgroup of \bar{G} and rice-versa, every subgroup of \bar{G} corresponds to a subgroup of G which contains key φ.

So, the subgroup structure of \vec{G} is same as the structure of subgroups of G containing Rear 9.

Proof Weill construct a bijection b/w S and T. Recall that if $\varphi: G \rightarrow \bar{G}$ is a homomorphism, then $\varphi(H) \leq \bar{G}$ for any $H \leq G$.

Define $\Psi: S \rightarrow T$ by

$$
\psi(H)=\varphi(H)
$$

i.e., take any subgroup in G and map it to its homomorphice image in \vec{G}.

Define $\bar{\psi}: T \rightarrow S$ by

$$
\bar{\psi}(\bar{H})=\varphi^{-1}(\bar{H})
$$

i.e., take any subgroup of \bar{G} and map it to the inverse image of H under φ.
Recall that $\varphi^{-1}(\bar{H}) \leq G$.
We want to show that Ψ and $\bar{\Psi}$ are inver--ses of each other and $\psi \cdot \bar{\psi}=I_{d} T$ and $\bar{\psi} \cdot \psi=I d_{S}$.
But even before that, why should $\bar{\Psi}(\bar{H})$ lie ie S, i.e, why should $\varphi^{-1}(\bar{H})$ contain $\operatorname{ken} \varphi$. ${ }^{2}$
Well, $\varphi^{-1}(\bar{H})=\{g \in G \mid \varphi(g) \in \bar{H}\{$
since, $\bar{e} \in \bar{H} \Rightarrow \operatorname{ken} \varphi=\{g \in G \mid \varphi(g)=\bar{e} \in \bar{H}\{$ is contained ie e $\varphi^{-1}(\bar{H})$ and hence $\bar{\psi}(\bar{H}) \in S$.
Proof of 1$)$
Claim $1 \quad \psi \cdot \bar{\Psi}=I d T$
Let $\bar{H} \in \bar{G} \Rightarrow \bar{\Psi}(\bar{H})=\varphi^{-1}(\bar{H})$

$$
\Psi_{0} \bar{\Psi}(H)=\varphi\left(\varphi^{-1}(\bar{H})\right)
$$

Note that, we cannot write $\varphi\left(\varphi^{-1}(\bar{H})\right)=\bar{H}$ on for example is $\varphi: G \rightarrow \bar{G}$ is the trivial homomorphism then $\varphi^{-1}(\bar{H})=G$ and $\varphi\left(\varphi^{-1}(\bar{H})\right)$ $=\varphi(G)=\bar{e} \neq \bar{H}$. In fact, this is the reason we are taking $S=\{H \leq G, \operatorname{ken} \varphi \leq H\{$ as you'll see that a complications like just described mon't occur if we choose subgroups from S.
Want: $-\square \quad \varphi\left(\varphi^{-1}(\bar{H})\right)=\bar{H}$.
Let $\bar{h} \in \bar{H}$. Since φ is surjective $\Rightarrow \exists g \in G$ s.t. $\varphi(g)=\bar{h} \Rightarrow \quad g \in \varphi^{-1}(\bar{H})$ and

$$
\varphi(g)=\bar{h} \in \varphi\left(\varphi^{-1}(\bar{H})\right) \Rightarrow \quad \bar{H} \leq \varphi\left(\varphi^{-1}(\bar{H})\right) .
$$

Conversely, if $h \in \varphi\left(\varphi^{-1}(\bar{H})\right.$

$$
\Rightarrow \quad \exists g \in \varphi^{-1}(\bar{H}) \text { set. } h=\varphi(g)
$$

If $g \in \varphi^{-1}(\bar{H})=0 \quad \varphi(g) \in \bar{H} \Rightarrow h \in \bar{H}$

Thus Claim 1 is true.
Similarly, one can prove that $\bar{\psi} \cdot \psi=I d_{s}$ and hence \exists a bijection b/w S and T.
This proves 1) of the Theorem.
Now weill prove part 2) i.e., if $H \in S$, then $[G: H]=[\bar{G}: \psi(H)]$.

It's enough to construct a bijection b/w the set of left cosets of H in G and the set of left cosets of $\psi(H)$ ie \bar{G}.
Define $\xi:\{g H: g \in G, H \in S\{\longrightarrow\{\bar{g} \bar{H} \mid \bar{H} \in T\}$ by $\quad \xi(g H)=\varphi(g) \varphi(H)$

Recall Principle 2:- we must check that the map $₹$ is well-defined as the domain is the set of cossets.

So, let $g_{1} H=g_{2} H \Rightarrow g_{2}^{-1} g_{1} \in H$.
Now $\xi\left(g_{1} H\right)=\varphi\left(g_{1}\right) \varphi(H)$

$$
\xi\left(g_{2} H\right)=\varphi\left(g_{2}\right) \varphi(H)
$$

now $\varphi\left(g_{2}^{-1} g_{1}\right)=\varphi\left(g_{2}\right)^{-1} \varphi\left(g_{1}\right)[$ as φ is a homomorphism]
But if $g_{2}^{-1} g_{1} \in H=0$

$$
\varphi\left(g_{2}^{-1} g_{1}\right) \in \varphi(H)
$$

$$
\begin{array}{ll}
\Rightarrow & \varphi\left(g_{2}^{-1} g_{1}\right) \varphi(H)=\varphi(H) \\
\Rightarrow & \varphi\left(g_{1}\right) \varphi(H)=\varphi\left(g_{2}\right) \varphi(H)
\end{array}
$$

Hence $\bar{\xi}\left(g_{1} H\right)=\bar{\xi}\left(g_{2} H\right) \Rightarrow \bar{\xi}$ is well-defined.

3 is one-one

Let $\bar{Z}(g, H)=\bar{Z}\left(g_{2} H\right)$

$$
\begin{array}{ll}
\Rightarrow & \varphi\left(g_{1}\right) \varphi(H)=\varphi\left(g_{2}\right) \varphi(H) \\
\Rightarrow & \varphi\left(g_{2}^{-1} g_{1}\right) \varphi(H)=\varphi(H)
\end{array}
$$

$\Rightarrow \quad \varphi\left(g_{2}^{-1} g_{1}\right) \in \varphi(H)$
$\Rightarrow \quad g_{2}^{-1} g_{1} \in H=\quad g_{2} H=g_{1} H$ and σ_{2} is one-one.

Z is onto.
Let $\bar{g} \varphi(H)$ be a coset of $\varphi(H)$. Since φ is surjective $\Rightarrow \exists g \in G$ sit. $g(g)=\bar{g}$.

$$
\Rightarrow \quad \xi(g H)=\varphi(g) \varphi(H)=\bar{g} \varphi(H) .
$$

$\Rightarrow \overline{3}$ is onto.
Thus $\frac{3}{}$ is a bijection ans hence we prove part 2).

I know that this is neither the easiest nor the best proofs to see, so I do not expect you to learn this. However, it's important to understand the content of the theorem.

Recalls that if $\varphi: G \rightarrow \bar{G}$ is an isomorphism then $\operatorname{Ren} \varphi=\{e\{$ and hence any $H \leqslant G$ conto--ins $\operatorname{ken} \varphi$. So as a corollary of the correspon--science theorem, we see that

Corollary 1 Let $G \cong \vec{G}$. Then

1) The subgroup lattices of G and \vec{G} are the same. $[$ as $S=\{H \leq G\}$ and $T=\{\bar{H} \leq \bar{G}\}]$.
2) $\forall R \in \mathbb{N}$, the number of subgroups ie G and \bar{G} of index R are the same.

Also, recall that if $N A G$, then $N=\operatorname{Ren} \varphi$ where $\varphi: G \rightarrow \frac{G}{N}$ is the natural homomorph--ism from $G \rightarrow G / N$. Thess, the correspondence theorem gives

Corollary 2 Let $N \triangleleft G$ and $\varphi: G \rightarrow \frac{G}{N}$ be the natural homomorphism. Then
(1) \exists bijection b/w $\{H \leq G \mid N \leq H\{$ and $\{\bar{H} \leq \bar{G}\{$.
(11) The bijection preserves the index of subgroups.

So corollary 2 is basically saying that the subgr --cup structure of the group $\frac{G}{N}$ is some as the structure of subgroups of G containing N.
\qquad - \qquad -0

